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SUMMARY 

An initial wind tunnel test was made to validate a new wall adaptation method 
for 3 - D  models in test sections with two adaptive walls. The model tested was an 
unswept semi-span wing. It was mounted on one sidewall of NASA's 0.3-m Transonic 
Cryogenic Tunnel, which is fitted with flexible top and bottom walls (semispan/tunnel 
height = 0.51). 
changed to increase the wall interference. The experiments were conducted at 
freestream Mach numbers of 0.7, 0 . 8  and 0.85 and model angles-of-attack between 0 and 
7". Model forces and moments were measured with a five-component balance. 

The vertical position of the wing in the test section could be 

First part of the adaptation strategy is an on-line assessment of wall 
interference at the model position. The wall-induced blockage was very small at all 
test conditions. 
with the walls set aerodynamically straight. The induced upwash varied considerably 
in the chordwise as well as in the spanwise direction. 

Noticeable lift interference occurred at higher angles of attack 

The adaptation of the top and bottom tunnel walls is aimed at achieving a 
correctable flow condition. The deflections are calculated to exactly eliminate the 
upwash gradient and the blockage velocity along one straight line in the test 
section. 
interference at the model. 

The location of this target line can be chosen with respect to the actual 

The blockage was virtually zero throughout the wing planform after the wall 
adjustment. The upwash velocity was small and nearly constant in chordwise 
direction. However, a spanwise gradient remained, even after a second wall 
adaptation. The induced angle of attack at the mean aerodynamic chord of the wing 
was chosen as correction to the freestream velocity vector. 

The lift curve measured with the walls adapted agreed very well with 
interference free-data for M,, = 0 .7 ,  regardless of the vertical position of the wing 
in the test section. However, noticeable discrepancies remained at M,, = 0.85  and 
high model angles of attack. This deviation was probably caused by an inaccurate 
wall interference assessment due to an insufficient number of pressure readings at 
the tunnel boundary. 

The 2-D wall adaptation can significantly improve the correctability of 3 - D  
model data. Nevertheless, residual spanwise variations of wall interference are 
inevitable. 
configurations are needed to clarify this point. 

This may restrict the usable model span. Further tests with different 

*This work was done while the first author held a National Research Council - NASA 
Research Associateship 
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INTRODUCTION 

Wall interference can be eliminated by adjusting the flow at the test section 
boundary. The idea is to provide a streamtube that is the same as in free-air. 

This concept is relatively easy to apply in 2-D airfoil testing. Only the top 
and bottom walls of the test section need to be flexible or ventilated. The side 
walls can be solid. A practical algorithm for streamlining the walls was devised by 
Sears in 1973 (ref. 1). Effectively interference-free data have been obtained in 
these "2-D adaptive" test sections for both conventional and supercritical airfoils. 
References 2, 3, 4 and 5 provide more details. 

The use of adaptive walls is less obvious for testing 3-D models. A simulation 

The three facilities built so far therefore almost inevitably suffer from 
of free-air conditions requires active flow control along the whole test section 
boundary. 
increased mechanical and operational complexity (refs. 3 and 4 ) .  

A simpler approach for transonic 3-D testing has been outlined by Kemp (ref. 6 ) .  
His idea is to provide only the amount of wall control necessary to achieve a 
correctable flow condition. An on-line interference assessment method would be used 
to categorize the disturbances at the model as negligible, correctable or 
uncorrectable according to the required data accuracy. 

The practical implications of this concept were independently studied by Harney 
and Wedemeyer. 
potential to substantially reduce the interference velocities in the region of the 
tested model (ref. 7). In other words, a 2-D adaDtive-wall test section mav also be 
adeauate for testing 3-D models. 

Harney shows experimentally that a 2-D wall adaptation has the 

Wedemeyer develops a wall adaptation technique for this purpose (ref. 8 ) .  
Assuming linear potential flow, he calculates wall deflections that would lead to 
interference-free flow at the tunnel centerline. (The method is also applicable, in 
principle, if the top and bottom walls of the test section are ventilated rather than 
flexible.) The interference velocities (blockage and upwash) are deduced from the 
slope of the two flexible walls and their centerline pressure distributions. 
explicit information about the tested model is needed. 

No 

A computer program of the adaptation method was developed in cooperation with 
Lamarche (refs. 9 and 10). Wind tunnel experiments at TU Berlin and ONERA/CERT 
demonstrated the soundness of this concept. References 3 and 10 contain a detailed 
analysis of the test results. 

The Wedemeyer-Lamarche technique uses the same few wall pressure measurements as 
in airfoil testing. This makes it easy to apply, but seems to preclude an accurate 
interference assessment, at least in half-model tests. Consequently, no 
"figure-of-merit" has been defined (see ref. 4 ) .  The convergence of the wall 
adjustments is the only criterion to estimate the progress of the adaptation. This 
may lead to more iterations than necessary to achieve a correctable condition. 
Moreover, a separate method is needed to determine the residual interference at the 
model (ref. 11). 

In this paper, an improved wall adaptation strategy for 3-D models in 2-D 
adaptive wind tunnels is described. Its essential features are: 
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(1) accurate on-line wall interference assessment based on flow measurements at 
the tunnel boundary ("two-variable method") 
(2)  elimination of wall interference at a user defined straight line in the 
test section 
(3) evaluation of residual interference in terms of a Mach number and 
angle-of-attack correction 

Initial validation tests have been performed with a semi-span wing in NASA 
Langley's 0.3-m TCT with flexible top and bottom walls. 
with the tunnel walls adapted are generally in good agreement with interference-free 

The model forces measured 

I values. 

ASSESSMENT OF WALL INTERFERENCE 

Wall interference in the test section is deduced from the pressure distribution 
and the no-flux condition at the four test section walls (or equivalent 
measurements). A representation of the tested model is not required. Reference 12 
provides a detailed description of the technique. The essential steps are as 
follows : 

The disturbance velocities induced by the tunnel boundary are assumed to be 
small and irrotational. Their potential #w fulfills the linear differential equation 

throughout the test section as long as the flow around the model is dominantly 
subcritical. 

We seek a solution of (1) in form of a source potential 

with 

ThesourcesaW(Q) are distributed at a control surface S enclosing the model. 
choose the cylindrical streamtube formed by the non-deflected test section walls. 

We 

. Equation 2 represents the wall constraint as a source-sink distribution. 
The goal is to determine the local strength aw(Q) from the flow condition at the 
tunnel boundary. 

The measured wall pressures are first transformed into axial disturbance 
velocities uI and the local wall slope into disturbance velocities vI normal to the 
control surface S .  
allow a precise interpolation both in streamwise and cross-stream direction (see 
APPARATUS). 

The number of pressure measurements should be large enough to 

The following analysis is a direct application of Sears' adaptive wall concept 
(refs. 1 and 4). The essential idea is to extend the experimental flow field in the 
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test section to infinity by adding a computed exterior flow. This fictitious flow 
satisfies the appropriate (farfield) differential equations and the condition of 
vanishing disturbances at infinity. One of the two measured distributions, say uI, 
serves as inner boundary condition. If the flow field in the test section is 
interference-free, it matches perfectly with the computed outer flow at the control 
surface. In this case, the combined flow fields simply represent the unconfined flow 
around the model. The computed (vE) and measured v-distributions (and all other flow 
variables) are the same at the control surface. 

However, if a mismatch occurs, vE - vI # 0 at S, the experimental flow field is 
not consistent with the farfield boundary conditions. Indeed, the discontinuity in 
the v-component completely defines the wall interference in the test section. We can 
see this as follows: 

For subsonic freestream Mach numbers, the flow in the farfield fulfills the 
linearized potential equation (1). 
a Dirichlet problem for the infinite region beyond the tunnel boundary. We can 
construct the solution in terms of a source-sink distribution at the control surface. 
The resulting surface integral is similar to equation ( 2 ) ,  but the field point P now 
lies in the exterior region. The potential generated within the test section has no 
physical significance. 

The exterior flow field computation thus becomes 

The unknown singularity strength oE is uniquely defined by the inner boundary 
condition. In fact, streamwise integration of the prescribed uI-distribution 
determines the potential at the control surface 

The integration upstream of the test section can usually be ignored in practice. 
However, an extrapolation of uI in downstream direction is often required. 

A combination of ( 3 )  and ( 4 )  leads to an integral equation of the first kind f o r  
We can solve it by approximating the surface integral with a suitable quadrature uE. 

formula. 

Differentiation of the solution in normal direction finally yields the desired 
outer v-component vE at S 

vE(P) = a d ~ / a n ~ ( P )  P E S ( 5 )  

If a jump in the normal velocity occurs, vE - vI # 0 at S, the experimental flow 
field is not interference-free. 
putting sources and sinks at the control surface that exactly compensate the local 
flux imbalance. The required singularity strength is given by Gauss' flux theorem as 

However, this discontinuity can be removed by 

d p )  = vI(p) - vE(p) (6)  
I 

The added singularities modify both the flow field in the test section and the 
computed exterior flow. The resulting flow field is continuous at the control 
surface and still fulfills the boundary condition of vanishing disturbances at 
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infinity. In other words, the modified flow field is interference-free. The source 
layer a(P) generates velocity perturbations within the test section that exactly 
cancel the wall interference. 

Consequently, the singularity distribution that represents the tunnel walls is 
given by 

uw(P) = - a(P) = VE(P) - VI(P) (7) 

Insertion of (7) into (2) defines the wall interference potential everywhere in the 
test section. The wall-induced velocities follow by differentiation. 

CALCULATION OF ADAPTED WALL SHAPES 

A deflection of the top and bottom walls of the test section changes the 
blockage and upwash interference experienced by the model. 
by small contour changes are governed by the linear potential equation 

The perturbations caused 

The cross-stream component is zero, since the wall deflections are constant across 
the tunnel width. 

The existence of a flow potential allows us to calculate the induced velocities 

everywhere in the test section. 

An adjustment of the wall contours is, of course, aimed at minimizing the wall 
The blockage and upwash velocities interference in the region of the tested model. 

for the given wall shape are known from the wall interference potential (equation 2) 

We disregard the cross-stream component since it cannot be reduced by a 2-D wall 
adaptation. 

The physical condition for the wall adaptation therefore reads 

A s  we can see, the determination of the required deflections is an inverse problem 
We need to simplify it in order to find a solution. A reasonable compromise is as 
follows : 
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We pick the vertical plane Y - Yo in the test section where the wall 
interference is worst. 
const. that passes through the model region. 

Within this plane we define a straight target line Zo = 

An easy-to-impose boundary condition for the wall adaptation is 

In other words, it is feasible to exactly cancel the blockage and upwash interference 
along the target line. (However, it is often more practical to just eliminate the 
upwash-gradient and include the remaining constant value in the angle-of-attack 
correction. See RESULTS AND DISCUSSION.) The residual interference in the model 
region can be accounted for as corrections to the freestream velocity vector. 

To find the desired deflections Ahu (upper wall) and Ahl (lower wall), we take 
Basically, we expand Ahu advantage of the linearity of the potential equation ( 8 ) .  

and Ahl in Fourier series, calculate the induced disturbance velocities, and then 
determine the unknown series coefficients by imposing the boundary condition (12): 

00 
Ahl(X) = aoX + C ansin(XnX) 

n= 1 

00 
Ah,(X) = cox + C cnsin(AnX) 

n= 1 

A, = nn/L, L = test section length 

The linear divergence terms are added to allow non-zero deflections at the test 
section end (allowance for model wake). 

The calculation of the induced disturbance velocities is easier in terms of the 
stream function J, rather than the potential 4.  
the (Cauchy-Riemann) differential equations 

The two functions are related through 

J,( = -flv 9 *v = (14) 

where fl(c,q) denotes the incompressible potential obtained from the Prandtl-Glauert 
transformation 

The boundary-value problem for the stream function follows from ( 1 3 ) ,  (14) and 
(15) as 

J,(C + J,vv = 0 

+((,-PH/2) = -Ah&€) , OI&L 

+(C,PH/2) = -Ahu(€) , OIeIL 
(16) 

(H = test section height) 
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I The solution consists of two parts 

$(<,VI = $1(€,v) t $2(E,v) 

$1(<,'1) = -((ao+co)P + (co-ao)v/PH)< (17) 
00 

1 

! 
$2(<,9) = {ansinh[Xn(v-PH/2)] - cnsinh[Xn(~+PH/2)1) sin(Xn<)/sinh(XnPH) n= 1 

I *  
$1 represents the disturbances caused by a linear divergence of the top and bottom 
walls. 
variables. Ref. 13 describes this technique in detail. 

The Fourier solution $2 can be derived by a separation of the independent 

The velocities induced at the target line Zo = const., result from ( 9 ) ,  (14) and 
(15) 

U(X,ZO) = $v(<,Pzo)/P 

W(X,ZO) = -$<(E,Pzo) 
(18) 

We develop the upwash and blockage interference at the target line into Fourier 
series compatible with (18) 

00 
uw(X) = uw(L)X/L + C r sin(X,X) 

n=l 

00 
WW(X) = so/2 t c s,cos(X,x) 

n= 1 

with the coefficients 

L 

0 
rn = 2/L (uw(X)-uw(L)X/L) sin(X,X)dX , n=1,2, ... 

s, = 2/L wW(X)cos(X,X)dX , n=0,1, ... 
0 

Imposition of the boundary condition (12) finally leads (after some 
straightforward calculations) to the following expressions for the series 
coefficients in ( 1 3 )  

a. = -s0/2 - P 2 uW(L)(H+2Z0)/2L 

co =  SO/^ t /3 2 u W ( L ) ( H - ~ Z ~ ) / ~ L  

a, = - 1 /An (Pr,sinh[X,/3(Zo+H/2)] + s,cosh[Xn~(Zo+H/2)]) 

c, = - 1 /An (Pr,sinh[X,/3(Zo-H/2)] + s,cosh[X,~(Zo-H/2)]) 

As we can see, the determination of the adapted wall shape involves three steps. 
First, computation of the Fourier coefficients rn and sn (eq. 20). 
blockage and upwash velocities are very smooth, both sets of coefficients rapidly go 

Since the 
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to zero with increasing frequency n. 
provide enough resolution. We pick N - 16 (= 2 ) in order to apply the very 
efficient FFT-method. This requires an even distribution of the input values uw(Xi) 
and ww(Xi), i-1, . . . ,  N along the target line. Reference 14 provides more details on 
FFT and contains a suitable computer program. 
algebraic equations (21) is straightforward. 
determine the wall deflections (eq. 13). We can compute the finite sums (inverse 
Fourier transform) with the same FFT computer program as in step 1. All three steps 
combined require very little execution time, even on a small computer. 

Typically the lowest 8 to 12 frequencies 4 

The subsequent evaluation of the 
The coefficients an and cn, n=O, . . . ,  N-1 

APPARATUS 

We conducted the experiment in NASA Langley's 0.3-M Transonic Cryogenic Tunnel. 
An adaptive test section with flexible top and bottom walls was installed in the 
tunnel circuit in 1985. It is nominally 33cm (13 inches) square and has an effective 
length of 1.42111 ( 5 5 . 8  inches). Reference 5 describes the facility in more detail. 

The model was a scaled-up (1.6 times) replica of a semi-span wing tested at 
Langley Research Center in 1951 (ref. 15). It was selected for the experiment 
because of the essentially free-air data available from this test. We measured the 
forces and moments on the model with a five-component strain gauge balance. 
shows the apparatus in detail, including the model turntable, which was installed in 
the right sidewall of the test section. We could mount the wing at two vertical 
positions; the tunnel centerline and halfway between the center and the top wall. 
Figure 2 shows the wing in the center position. 

Figure 1 

The blockage ratio of the model in the TCT adaptive wall test section was 0 . 7 9 %  
and the semi-span to tunnel width ratio was 0.51. Table 1 provides more information 
about the wing geometry and summarizes the test conditions. As in the early Langley 
test, all experiments were performed without a boundary-layer trip. 

Recording of the static pressure distribution at the tunnel walls provided some 
difficulty. 
centerline of the top- and bottom walls, which is adequate for airfoil testing. On 
the other hand, three rows of orifices above and below the model and one row at one 
sidewall are typically required for an accurate wall interference assessment in 3 - D  
flows (ref. 16). 

The test section was only equipped with pressure orifices at the 

However, it was too time-consuming to add orifices on the flexible walls. 
Instead, we installed two rows at the right sidewall of the test section, as close to 
the flex walls as possible. 
exact location of the two rows (see figure 1). 
angle-of-attack was ignored in the wall interference computations. 
sidewall was equipped with 14 pressure taps, concentrated in the model region. 

The orifices drilled in the model turntable show the 
Their displacement for non-zero 

The opposite 

The inaccurate representation of the wall pressure distribution is probably 
responsible for the noticeable residual interference at higher Mach numbers and 
angles-of-attack (see RESULTS AND DISCUSSION). 
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RESULTS AND DISCUSSION 

In the following, we will illustrate the wall adaptation procedure for the 
typical flow case M,, = 0.7 and a - 7". 
above the tunnel centerline. 

The wing is in the high position, 3.25 inches 
A flow chart of the algorithm is presented in figure 3. 

The first step is an assessment of the wall interference at the model position. 
Figures 4,5 and 6 show the induced Mach number and angle of attack at three spanwise 
locations with the tunnel walls set to aerodynamically straight. The blockage 
interference is small and constant at the wing planform. However, the induced upwash 
varies considerably, in chordwise as well as in spanwise direction. At the wing 
root, for example, ACY increases from 0.3" at the leading edge to 1.7" at the trailing 
edge. 
(figure 5) and the wing tip (figure 6 ) .  

A similar behavior occurs at the location of the mean aerodynamic chord 

Figure 7 summarizes the wall interference experienced by the model. This plot 
appears on the control monitor of the wind tunnel computer during the test. 
indicates the progress of the adaptation and helps the researcher to position the 
target line for the wall shape calculation (equation 12). The calculated Mach number 
increment AM at each spanwise location simply is an average value across the 
respective chord. 
induced absolute angle-of-attack (ref. 17): 

It 

The lift interference across the span is represented by the 

In this way, the induced camber at each spanwise section is properly taken into 
account. 

Interference is highest at the wing root and we position the target line 
accordingly. The wall interference assessment method then calculates the blockage 
and upwash along this line. In other words, the previously computed interference 
velocities at the selected wing location are extended upstream and downstream. 

The next step is to determine improved wall shapes. It is possible to 
completely eliminate the blockage and lift interference at the target line. The 
necessary deflections are calculated in eq. (21). However, the required constant 
downward wall slope downstream of the model may result in jack movements beyond the 
2-D design limits. It is therefore more practical to eliminate the upwash gradient. 
We simply achieve this by setting so = 0 in (21), that is by ignoring the constant 
part in the induced upwash distribution. 
rotated about the anchor points compared with the 'fully' adapted contours. Figure 8 
shows this schematically. 

The resulting wall shape appears to be 

Figure 9 presents the actual wall contours after the first iteration. The 
largest deflection of about 0.65  inches occurs in the region of the model. These 
rather small displacements are quite feasible in a 2-D adaptive test section. 
example, the 0.3-m adaptive wall test section allows a maximum jack movement of 3 
inches upward and 1 inch downward. 

For 

The residual interference after the wall adjustment is shown in figure 10 for 
the wing root. 
as expected. 

The induced angle of attack is virtually constant across the chord, 
The remaining Mach number deviation is beyond measurement accuracy. 
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The upwash and blockage interference at the other spanwise locations is, of course, 
simultaneously reduced. Figure 11 summarizes the results. 

However, the induced angle of attack still varies across the wing span. This 
residual spanwise gradient is an inevitable limitation of a 2-D wall adjustment 
(deflections constant across the tunnel width). In practise, we may need to reduce 
the span of the tested model to achieve the required accuracy. However, conclusions 
are difficult to draw at this point. 
important role. Numerical simulations done by Smith provide some insight into this 
problem (ref. 18). 

The model aspect ratio will undoubtedly play an 

The remaining wall interference had no significant effect on the measured model 
data in this test. 
high position. 
aerodynamically straight (fig. 9) is larger than the 7x10 (interference-free) values. 
However, a linear correction based on the induced angle-of-attack at the mean 
aerodynamic chord of the wing (2y/b = 0.42 , see figure 7) is generally sufficient in 
this case. Only for the highest angle of attack, do we actually need to deflect the 
walls to achieve correctability. As expected, a second wall adjustment has little 
effect on the model measurements. 

We can see this on figure 12 for M, = 0.7 and the wing in the 
The model lift measured with the flexible walls set to 

Figure 13 shows a similar comparison for the wing in the center position. 
Again, the model lift in the adapted test section agrees well with 
the interference-free data throughout the whole angle-of-attack range. 

However, noticeable discrepancies remained for M, = 0 . 8 5 .  Figure 14 presents 
the results obtained with the wing centered. Adapting the walls reduces the wing 
lift as it should, but not to the extent necessary to simulate free-air con itions. 
This defect fay be partly caused by a Reynolds number mismatch (Re - 1.5~10 
with 0.73~10 in the 7x10 test, ref. 15). Another contributing factor undoubtedly 
was the inaccurate interference assessment due to an insufficient number of wall 
pressure orifices. 

$ compared 

CONCLUDING REMARKS 

Although a 2-D adaptive-wall test section cannot precisely simulate 
interference-free flow around a 3-D model, it can improve the correctability of the 
test data to a considerable extent. However, some residual spanwise variation of 
wall interference is inevitable. The required wall deflections are feasible within 
2-D design limits. 
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TABLE 1. Three-Dimensional Semispan Adaptation Test 

0 Unswept wing model 

Aspect ratio 
Taper ratio 
Airfoil section 
Semispan/width 
Reference data 

I 0 Test conditions 

Mach number 
Angle of attack 

0 Test configurations 

0 Measurements 
I 

4.0 
0.6 
NACA 65A006 
0.51 
LRC 7' x 10' tunnel - 1951 

0.7 - 0.85 
00 to 70 

Wing centered and high 

Model forces; wall pressures and deflections 

Figure 1. Semispan force-model apparatus. 
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Figure 2 .  Model i n s t a l l e d  i n  Langley 0.3-m Transonic Cryogenic Tunnel. 
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Figure 3 .  Wall adap ta t ion  f l o w  c h a r t .  
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Figure 4 .  Chordwise variation of wall interference, walls straight, 
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Figure 5. Chordwise variation of wall interference, walls straight, 
M, - 0.7, a = 7 O ,  wing high. 
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walls straight, M, = 0.7, Q - 7 O ,  wing high. 
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Figure 10. Chordwise variation of wall interference, first iteration, 

M, - 0 . 7 ,  a - 7 O ,  wing high. 
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Figure 11. Interference at wing after first wall adjustment, 
M, - 0.7, a = 7', wing high. 
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Figure 12. Measured wing lift versus interference-free 

data, M, = 0.7, wing high. 
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Figure 13. Measured wing lift versus interference-free 

data, M, = 0.7, wing centered. 
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Figure 14. Measured wing lift versus interference-free 

data, M, - 0.85, wing centered. 
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